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NOMENCLATURE 

Biot number, hR/k; 
specific heat of freezing substance ; 
specific heat of coolant ; 
area of solid in radial plane/rrR’; 
(volume of solid between 0 and x)/xR’x ; 
functions of F, see equations (12)-(14); 
convective coefficient inside tube ; 
conductivity of freezing substance; 
flow rate of coolant ; 
number of transfer units, 2hnRx/nic,; 
heat flow per unit length; 
dimensionless heat flow, Q/ZnRh(T,,, - T,); 
radius of solid-liquid interface ; 
radius of tube ; 
Stanton number, h/plfc,; 
Stefan number, c( T,., - T&/I.; 
time ; 

T,, coolant temperature; 

TO> T, at inlet; 

7-W freezing temperature ; 
T W1 wall temperature of tube; 

V, velocity of coolant; 

X, axial coordinate. 

Greek symbols 
effectiveness; 
dimensionless interface radius, r*/R ; 
latent heat; 
dimensionless axial coordinate, 

I 
(27cR/nic,) 

s 
hdx; 

0 

density of freezing substance ; 
density of coolant; 
dimensionless time variable, 

(k/pnR’) 

at inlet, x = 0. 

INTRODUCTION 

A SITUAWIN~O~~O~ to many applicationsis the freezing ofa 
substance outside a coolant carrying tube. Owing to the axial 
increase in the temperature of the coolant as it picks up heat 
from the freezing substance, the frozen layer, while being 
axisymmetric, varies in thickness axially. Quite a few papers 
have addressed this problem [l-6]. Some made restrictive 
assumptions, and all involved numerical calculations to 
obtain the solution. Among these, the most thorough analysis 
is made in the paper by Sparrow and Hsu [6]. However, this 

presented no comparison with the results of the other, earlier, 
papers. 

In this paper, we shall use the model proposed by 
Shamsundar and Srinivasan in ref. [3] to develop analytical 
solutions for the problem and evaluate the ensuing formulae 
using the numerical results of ref. [6]. 

ANALYSIS 

All the models hitherto used assume that heat transfer in 
the freezing substance is by conduction alone. The model of 
ref. [3], which will be used here, differs from that of ref. [6] in 
neglecting heat capacities and axial conduction effects. It is 
the neglection of these effects that makes an analytical 
solution possible. The derivation of ref. [3] was with reference 
to a tube array and is, consequently, long and involved. We 
shall, therefore, give a simpler development of the model here, 
taking advantage of the axisymmetric nature of the particular 
case at hand. 

The sketch of Fig. 1 will be used in the derivation. In the 
absence of axial conduction and with neglected heat capa- 
cities, the temperature distribution in the solid is logarithmic 
and the heat flow per unit length obeys the relations 

Q= 
2nW,, - T,) 

In (r*/R) 
= ZrrRh(T, - T,) 

conduction 

aT, = tic- 
8X 

increase in 
enthalpy of 
coolant 

convection 

= g [n(r*’ - R’)pi]. (1) 

latent heat 
released 

In nondimensional form, these relations reduce to 

o= h; - T,) = AZ. (2) 

l+klnq 

= - $In (T,,, 

Equating the second and the last terms, and replacing v by 
(1 + F)‘/* we get 

2B2= 1 +fil (1 +F) 
JF 2n ’ 

which shows that F is a function off only. 
Next, let us calculate the axial variations of F and (T,, - 

T,). For this purpose, consider the instantaneous energy 
balance for the section of the tube from 0 to x, again with heat 
capacities ignored 

nic,(T, - T,) = $ 
s 

X 
nplR2F dx. 

0 

enthalpy rise latent heat released 
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To (1) - 

T 
2R z t= (11) 

i- 
where St is the Stanton number. Sparrow and Hsu [6] hxed 
(x/R) = 100, and presented results for St = 0.003 and 0.005. 
Thus, our neglecting heat capacity and axial conduction leads 

FIG. 1. Sketch showing axisymmetric solidification outside 
to a solution in which SC and (x/R) combine into a single 

coolant-carrying tube. 
parameter. 

For convenience in obtaining numerical results, let us 
introduce the auxiliary functions 

Integrating with respect to time, and converting to non- 
dimensional variables, we get G,(F) = ln(l +F)dF=(l + F)ln(l + F)- F, (12) 

1 5 F 

ro-r=- 
s 2Bi o 

Fd& G,(F) = s 0 
In (1 + F)$ 

Differentiate equation (4) with respect to 5 and combine with 
the last equation of the set (2) to get =i[ln(l +F)]* + /oF1n((~~~)~F. (13) 

-dln(T,,,- 7,)=& fdr=& ZdF The last integral on the RHS of equation (13) is the Debye 

= -dlnF. (5) 
function of order one* with In (1 + F) as the argument, and is 
tabulated in, for example, ref. [7]. Alternatively, the following 

Consequently, the temperature and the shape of the frozen Pad& approximation may be used with a programmable hand 

layer vary along the axis in the same manner. That is, 
calculator: 

G,(F) = [p(l + 17p2/450)/(l + p’/lOO) + p2/4] (1 k 6) 

where 

by virtue of equation (6). Thevariable 4 is none other than the 
number of transfer units (NTCJ), and may be expressed as 
follows, if h is assumed independent of x : 

Using the relation (5) in equation (2) leads us to the p = In (1 + F), 
following relation for the axial variation of F: 

6 < 1O-5, F < 3, 

<= F” S[ 1 6 < lc+, F -=c 8 
F 

+ f In (1 + F) d In F. 1 (7) (14) 
and 

Finally, we may combine equations (3) and (4) to obtain the 
overall frozen fraction F from 6 < 10-3, F < 29 

yFz 
s’ 

In terms of these functions, our final results are 
F d5 = 2Bi(s, - r) 

0 T = F/2Z3i + G,(F)/4, (15) 

= l+:ln(l+F ‘1 dF 
1 

(8) 
5 = NTU = 2.9(x/R) 

= In (FOP) + W/2) [G,(Fd - G,(F)], (16) 
and integrate equation (3) to get E = (T, - T,)/(T,,, - T,) = 1 - F/F,, (17) 

2Bir = 1 +Fln(l + F) 1 dF. (9) tF = (F, - F) + (BU2) [G,(F,) - G,(F)] 

= ZBi(r, - T). (18) 
Some features of our solution, comprising equations (6) 

and (7), are worth noting: (i) all the results are expressed in 
terms of F and F, as the primary variables; (ii) these 
equations allow the inlet temperature of the coolant to vary 
with time, which is important in some applications; (iii) the COMPARISON OF RESULTS 
heat transfer coefficient h may vary axially, which is useful in 
some applications that involve laminar flow with its accom- 

As noted earlier, our results areexpressed using the fraction 

panying large entrance lengths. None of the earlier solutions 
F as the primary variable. In practice, however, one wishes to 

[l-6] took both (ii) and (iii) into account. However, adap- 
obtain the results in terms oft and x. To do so, the following 

tation of the numerical scheme of ref. [6] to treat such 
steps should be undertaken : 

variations is straightforward. (i) From the known variation (if any) of T, with f, calculate 

Several interpretations of the parameters are likely to be TV using the definition. 
useful. The effectiveness of the heat exchanger is (ii) Use this value of r,, in equation (15) written at x = 0, 

Tr - To F 
and solve the equation for F,. 

czp= I__, (iii) Calculate 5 = NTU from the data, and solveequation 

Tsa, - To FO 
(10) 

(16) for F. 

* The Debye theory of specific heat of solids leads to the Of these steps, (ii) and (iii) involve the solution of nonlinear 
Debye integral of order three, which has In (1 + F) raised to equations which, since the equations are analytical, is best 
the third power instead of the first as here. done using the Newton-Raphson method. 
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(iv) Calculate E and the fluid temperature Tf from equation 
(17). If desired, calculate T, from equation (1). 

(v) Calculate F from equation (18), if desired. 
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If complete design charts are needed, it is easier to assume pared in ref. [6]. Our solution leads to slightly more 
various values of E and F,, and to directly calculate NTU, r0 complicated formulae, but is not restricted to small time, and 
and l? is in excellent agreement with the finite-di&rence results. 

Many useful conclusions can be drawn by merely inspect- 
ing the analytical results. For instance, if the Biot number is 
small, 5 3 ln(F,/F) = -In (1 - c) or E z 1 - BeNTi”, which is 
the effectiveness of a two-fluid heat exchanger with one fluid 
changing phase with very high film coefficient. The larger the 
Biot number is, the more significant is the deterioration in 
effectiveness as solidification progresses. Since detailed results 
have already been given by Sparrow and Hsu [6] from which 
the various influences are readily obtainable, we shall only 
make a comparison, referring the reader to ref. [6] for figures 
and a discussion of the results. 

CONCLUSIONS 

Using the procedure stated above, we calculated tables of 
results for all* the cases dealt with by ref. [6] (Bi = 25, Ste = 
0, St = 0.003 and 0.005, x/R = o-100). By plotting these 
numbers on full-page copies of the original figures of ref. [6] 
on graph paper, we found the predictions of our equations to 
coincide with the results of ref. [6], to an accuracy of better 
than 0.2% (plotting accuracy). This agreement shows that the 
neglection ofaxial conduction is proper and that the model of 
ref. [3], including the remarkable result, equation (6) is 
correct. On the other hand, the agreement also attests to the 
care taken in the numerical work of ref. [6] and the accuracy 
of the results presented there. Finally, there is no need to 
present any figures of results, since those of the results of ref. 
[6] that pertain to Ste z 0 exactly do this. 

A feature of the problem, which is elucidated by the 
formulae, is worth mentioning. For large Biot numbers, ref. 
[6] shows interfaces that are straight in the axial direction. 
That this is the case is assumed in the analysis of ref. [5]. 

From equation (7), we obtain 

Approximate closed-form formulae have been derived for 
freezing of a substance outside a coolant carrying tube, by 
neglecting heat capacity and axial conduction. The coolant 
inlet temperature may vary with time and the convective 
coefficient may vary axially, but the latter, as well as the flow 
of the coolant, are assumed to be constant in time. The 
temperature distribution is logarithmic in the radial plane. 
The axial temperature distribution is identical with the 
distribution of F, the solid fraction in the radial plane, along 
the axis. For large Biot number, the interface is a truncated 
cone, and the axial temperature distribution is parabolic. 

The formulae are in excellent agreement with the results of 
finite-difference calculations and detailed results are available 
[6]. As the finite-difference calculations included heat capa- 
city and axial conduction, the agreement justifies neglecting 
those effects. 
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for large Bi. The expression (a* - I)/(7 In q) varies very little 
with 4 (from 2 at 1 = 1 to 2.16 at 9 = 2). Consequently, the 
slope becomes constant along the axis at any instant. Since F 
ZZ ‘12 - 1, equation (6) shows that the temperature distri- 
bution is parabolic in X. 

A small-time solution based on a linear temperature 
distribution in the radial direction was presented and com- 

* With the exception of a few results for Ste = 1, shown in 
Figs. 4 and 11 of ref. [6]. Our model sets Ste z 0, and cannot 
predict any effect of Ste; however, even for the large value Ste 
= 1, ref. [6] shows a change from the Ste = 0 predictions of 
less than 11% in the thickness of the frozen layer and less than 
9% in the energy extracted. 
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